
Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-134242

Qualification of Safety-
Related Software in
Nuclear Power Plants

J. D. Lawrence and G. L. Johnson

This article was submitted to
International Topical Meeting on Nuclear Plant Instrumentation,
Controls, and Human-Machine Interface Technologies
Washington, DC
November 16-18, 2000

June 13, 2000
Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

 This report has been reproduced
 directly from the best available copy.

 Available to DOE and DOE contractors from the

 Office of Scientific and Technical Information
 P.O. Box 62, Oak Ridge, TN 37831

 Prices available from (423) 576-8401
 http://apollo.osti.gov/bridge/

 Available to the public from the

 National Technical Information Service
 U.S. Department of Commerce

 5285 Port Royal Rd.,
 Springfield, VA 22161
 http://www.ntis.gov/

 OR

 Lawrence Livermore National Laboratory

 Technical Information Department’s Digital Library
 http://www.llnl.gov/tid/Library.html

International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human-Machine Interface Technologies
(NPIC&HMIT 2000), Washington, DC, November, 2000.

This work was performed under the auspices of the U.S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Qualification of Safety-Related Software in Nuclear Power Plants

J. Dennis Lawrence and Gary L. Johnson
Lawrence Livermore National Laboratory

Livermore, California USA 94550
lawrence2@llnl.gov johnson27@llnl.gov

Keywords: Safety system software, flowgraphs, safety qualification

ABSTRACT

Digital instrumentation and control systems have the potential of offering significant
benefits over traditional analog systems in Nuclear Power Plant safety systems, but there
are also significant difficulties in qualifying digital systems to the satisfaction of regulators.
Digital systems differ in fundamental ways from analog systems. New methods for safety
qualification, which take these differences into account, would ease the regulatory cost and
promote use of digital systems. This paper offers a possible method for assisting in the
analysis of digital system software, as one step in an improved qualification process.

1. Motivation

Digital instrumentation and control (I&C) systems have the potential of offering
significant cost, performance and reliability benefits over traditional analog systems. When
used in safety-critical applications, such as nuclear power plant (NPP) safety systems, such
I&C systems must be qualified to meet concerns of regulators, users and the public. For
computer-based safety-system components, this qualification includes the design
qualification of the embedded software components to confirm that the component can be
trusted to perform its safety functions under the full range of operating conditions.

Current state-of-the-practice in software engineering includes no single method that
can be used to qualify NPP safety software. The United States Nuclear Regulatory
Commission (NRC) practice, as documented in the Standard Review Plan (NRC, 1997),
focuses attention on the process used to develop the software, in the belief that a well-
qualified development process is more likely to create satisfactory software than a poorly-
qualified process. This attention is supplemented by thorough verification and validation of
the design outputs produced by the development process. This is an expensive process.
Industry estimates show that verification and validation accounts for 20 to 40% of the
development cost in a well designed development program. In poor development programs
the cost can be much higher. This project was triggered by the desire to find less expensive
ways for software qualification.

The idea of making a radical improvement in qualification methods for the general
case of safety software is daunting. For this work we chose to focus on simple digital
components of safety systems. Many NPP safety systems components have characteristics
similar to those of many other process control safety applications – personnel protection,
effluent waste monitoring, building ventilation, consumer products, and the like. These
systems (termed here small safety systems) tend to be small (thousands of lines of code,
not millions), have limited inputs from sensors, have limited outputs to actuators, and have
restricted functionality focussed on detection of unsafe process conditions and safe shut
down. There are a great number of such systems – indeed, it is likely that many people in
the United States is “touched” by several small safety systems everyday, given their

(2)

prevalence in microwave ovens and other consumer devices. Nuclear power plant examples
of such components might include panel meters, protective relays, time-delay relays, diesel
speed controls, and diesel load sequencers.

Qualification of analog components has a long history, and is reasonably well
understood. The necessary confidence is often developed through a combination of design
evaluation, testing and inspecting the equipment, and operating experience review (EPRI,
1988). This way of developing confidence is possible because (1) analog components are
built from standard modules with known properties, (2) design documents are available
and described in a well understood language (such as schematic diagrams), (3) the
performance is constrained by physics, and (4) physics models exist to predict the
performance. These attributes permit the designer to construct a model based upon physics
principles that will predict discontinuities in the system transfer function. One can then
conclude that the instrument will react properly throughout the range of input values based
on limited testing.

Unfortunately, this approach will not work for digital components because in most
cases (1) the software in these systems is not constructed using standard modules, (2)
software design information is frequently unavailable, and (3) software functions are not
constrained by physical laws. Therefore, it is difficult to construct practical design models
to support the use of testing and operating experience for design qualification.

At the present time, the developer must attempt to convince the licensee or the
regulator that the software has no safety-significant failure modes by means of an argument
which is intended to develop confidence in equipment by gaining confidence in the
developer’s design, verification and validation activities. This argument typically includes
extensive testing and the use of a high-quality development process. We would like to have
a viable alternative to this form of argument for a number of reasons. First, safety-
significant failures are frequently the result of unexpected combinations of rare events
which may well escape notice in testing. Second, process assessment does not directly
measure the safety of the product of interest, but instead relies on an inference about safety
from observations of the development process. Third, process assessment requires labor-
intensive inspections of development processes and records, and often cannot be carried
out on existing systems when the development records are not available. A more appealing
argument in support of a safety conclusion would depend on inferences that are easier to
support .

The Lawrence Livermore National Laboratory (LLNL) has been engaged in a small
research effort during 1998 and 1999 attempting to develop an alternative approach to
qualification of simple safety components by combining knowledge of the properties of
such components with limited testing, and then combining the results with knowledge of
other properties of the component to permit a reasoned argument in support of
qualification. This paper is concerned with a portion of the general problem – analysis of
the software itself that can be used to draw conclusions about its properties. The result is to
enable construction of an argument that is analogous to the continuity argument used for
analog systems.

2. Simple Systems

The initial motivation for our research was consideration of the implications of a
number of articles on software testing. Theoretical arguments by Littlewood (1993) Bulter
(1993) and Poore (1993) imply that enormous amounts of testing are required for modest
assurance of software reliability. While attempting to understand the implication of these
arguments, we concluded that they are based on assumptions of ignorance. That is, the

(3)

arguments assume no knowledge of the structure of the software or its input space. We
concluded that if knowledge of the software and its input space could be made available,
then one ought to be able to construct a more optimistic argument. For simple components,
the input space is generally very simple and is nearly always well understood. Therefore,
the interesting question is obtaining knowledge of the software itself.

It is generally agreed that safety systems and components should be kept simple,
but there is no widespread agreement on exactly what this means when applied to software.
We believed that “simple” should be defined in such a way as to permit careful analysis of
the software. We therefore began by deciding how we wished to analyze the software, and
then determined what types of simplification rules needed to be applied to the software in
order to make the analysis feasible. That is, we adopted a pragmatic approach of imposing
design rules on the software that makes possible the analysis we wanted to perform.
Somewhat to our surprise, these rules to not appear to be especially burdensome on the
programmers.

The software analysis we chose is based on the theory of flowgraphs and the theory
of software testing.

3. Theory

A flowgraph is a directed graph in which the nodes represent instructions (or small
groups of instructions) and the edges represent potential transfers of control. In keeping
with the usual theory of flowgraphs (Hecht, 1977; Muchnick, 1981; and Fenton, 1985) we
assume the existence of a unique start node from which every other node in the flowgraph
can be reached by some path, and a unique stop node which can be reached from every
other node in the graph. A path in this graph from the start node to the stop node is an
abstraction of a possible execution path in the software itself. Thus, analysis of the
software execution can be carried out by analyzing all the execution paths in the flowgraph.

Fig. 1 shows a portion of a program taken from (White, 1980), and the resulting
flowgraph is shown in Fig. 2. In this diagram, nodes are shown as circles and directed
edges by arrows. Labels in the nodes represent the statements and conditions in the
program.

The information in the flowgraph is sufficient to construct a tree, termed the
flowgraph tree, whose branches are the potential execution paths of the program. In
general, this tree will be infinite. The tree form can theoretically be used to determine the
exact conditions that will cause each branch to be executed, and to determine the functions
that will be calculated on each branch. Fig. 3 shows the flowgraph tree for the example.

(4)

read I, J ;
if I ≤ J + 1

Then K = I + J – 1 ;
Else K = 2 * I + 1 ;

if K ≥ I + 1
then L = I + 1
else L = J – 1 ;

if I = 5
then M = 2 * L + K ;
else M = L + 2 * K – 1 ;

write M ;
Fig. 1 Example Portion of a Program

The computer science literature has shown that there are four classes of potential
faults in program, termed domain faults, missing predicate faults, computational faults and
timing faults. The flowgraph tree can be analyzed in a reasonably straightforward manner
to determine if any potential faults in these classes exist for the branch. In potential faults
do exist for a branch such that unsafe failure is possible, then qualification of that branch
can be rejected. If such do not exist, then the digital system may be qualified for that
branch. Extending this to all branches can be used to infer the potential for, or lack of, any
unsafe failure modes in the program.

Fig. 2. Flowgraph for Fig. 1

Read

i ≤ j + 1

kk

L L

mm

k ≥ i + 1

i = 5

Write

(5)

4. Design Rules

It now became necessary to impose a set of rules, termed design rules, on the
software is a small safety system so that the analysis outlined in the last section is possible.
This takes several forms: fundamental restrictions, general rules and specific rules.

4.1. Fundamental Rules

There are three fundamental restrictions that are assumed for a small safety system.
First, it will be assumed that all input to the program comes from sensors and all output
goes to actuators. In particular, the safety action is carried out independent of human
operators.

Second, it is assumed that the safety assertion is known precisely as a mathematical
relation on the sensor input values and actuator output values. For example, in a microwave
oven, the safety rule is that either the power is off or the door is closed.

Fig. 3. Flowgraph Tree for Example in Fig. 2

Third, it is assumed that the program operates under a cyclic executive system. This
causes the program to operate as a single repetitively executed program; the executive starts
the program periodically, the program carries out its calculations and sets any necessary
actuator results, and this process repeats indefinitely.

4.2. General Rules

There are three general rules that must be satisfied to carry out our analysis method.
Each of these is phrased as a necessary condition on the software. They are:

• Flowgraph creation. It must be possible to create a flowgraph that completely
represents the execution of the program. That is, the flow of control given in the

T F

T F

TF TF TF TF

T F

k k

L L L L

m m m m m m

(6)

flowgraph is presumed not subject to operating system interruptions and can be
statically determined.

• Flowgraph tree creation. It must be possible to transform the flowgraph into a finite
flowgraph tree.

• Fault detection. It must be possible to determine if any of the different classes of faults
exist.

4.3. Specific Rules

The general rules are somewhat abstract, so more specific rules are required such
that if the specific rules are obeyed, the general rules are satisfied. We have created a list of
specific rules, which we believe are sufficient to satisfy the general rule; proof of this is left
for future research. There are seventeen of these rules. It is worth noting that none of these
rules make it impossible to write the software for a small safety system. The combination
of these rules is our definition of a simple software system. The rules are listed briefly
below; see (Lawrence, 2000) for justification of the rules and a more complete discussion.

• There shall be no interrupts, except for timer interrupts that occur at fixed intervals and
have a known maximum duration.

• The operating system shall not perform time slicing.

• There shall be no multi-processing and no multi-tasking.

• There shall be no dynamically variable program structures, such as a go-to statement
where the address is a variable.

• Each loop within the program must have an upper bound on the number of repetitions,
where this bound is independent of any program input value.;

• There shall be no unbounded recursion.

• The input domain must be finite.

• The program transfer function must be a total function.

• The program transfer function must be known and computable.

• The maximum size of every program data structure must be fixed and finite.

• There shall be no dynamic memory allocation.

• Variant structures (termed “unions” in C) without tags shall be forbidden.

• All procedure and function calls must be protected by a prototype declaration supported
by strict use of data typing.

• All variables shall be declared and typed.

• Unspecified, undefined and implementation-defined programming language feature
must be avoided.

• Minimum and maximum timing requirements for each node in the flowgraph must be
computable.

• Pointer arithmetic is forbidden and only one level of indirection is allowed.

(7)

5. Program Analysis

Even with the design rules, a small safety system can generate a very large number
of branches in the flowgraph tree. Analyzing all of the branches with a reasonable cost
requires that most of the branches be handled in an automated way. A prototype tool was
constructed for this purpose, to explore the feasibility of analyzing each branch for possible
safety violations. It is not to be expected that all branches can be completely analyzed
automatically, but if the number of branches left for human examination can be kept
limited, the expense of the process can be kept bounded. The success of the initial
prototype has encouraged us to expand it to cover more of the analysis process.

The tool includes five main steps.

1. Create the flowgraph from the small safety system program

2. Verify that the design rules have been met

3. Transform the flowgraph into a flowgraph tree

4. Analyze each branch of the tree

5. Construct a safety argument from the analysis

The first three steps present no conceptual difficulties. There are, however, a
number of issues that have to be resolved in order to carry out the analysis. This is
sketched next; see (Lawrence, 2000) for more details.

• Each branch of the flowgraph tree can be distinguished from all other branches by
means of the predicates that cause the branch to be executed. Thus, the branch consists
of a mixture of predicates, each evaluated to TRUE or FALSE, and a sequence of other
statement. All of these statement can be rewritten in terms of input and state variables
using well-known methods (White 1980).

• In general, some of these predicates will be inconsistent: a branch, for example, may
contain two predicates that imply x > 0 and x < 0. Such impossible branches can be
eliminated from further analysis; the program will never execute them.

• Each assignment statement on a branch may be rewritten in terms of input and state
variables. The result is a set of functions computed by the branch. These are termed the
branch functions.

• It is now easy to determine that each variable on the branch is defined prior to use.

• Since it is assumed that the time requirements for each node of the branch can be
computed, timing analysis for the branch is straight-forward.

• Bounds can be placed on the size of all calculated variables on the branch, using range
arithmetic (Alefeld, 1983). This is sufficient to check for divide-by-zero and overflow
possibilities.

• Array manipulations, subroutines, floating point arithmetic, and other matters require
special attention. Research continues on these items

• Errors in compilers, operating systems, software libraries and the like must be covered
by other means

This analysis, applied to the example flowgraph tree in Fig. 3, is shown in Table 1.
Here, the branches of the tree are indicated by truth values for the three conditions in the

(8)

three branch statements. Each condition can be written in terms of the input variables I and
J, as shown. Likewise, each of the program variables K, L and M can be written in terms
of the input variables. Two of the potential branches in the tree are not possible since the
conditions for those branches are inconsistent.

Table 1. Predicates and Path Functions for Example Program in Fig. 3

i ≤ j + 1 k ≥ i + 1 i = 5 k L m

TTT i ≤ j + 1 j ≥ 2 i = 5 i + j - 1 i + 1 3i + j + 1

TTF i ≤ j + 1 j ≥ 2 i ≠ 5 i + j - 1 i + 1 3i + 2j - 2

TFT i ≤ j + 1 j < 2 i = 5 This path domain is nonexistent since it
implies i = 5 and i ≤ 3.

TFF i ≤ j + 1 j < 2 i ≠ 5 i + j - 1 j - 1 2i + 3j

FTT i > j + 1 i ≥ 0 i = 5 2i + 1 i + 1 4i + 3

FTF i > j + 1 i ≥ 0 i ≠ 5 2i + 1 i + 1 5i + 2

FFT i > j + 1 i < 0 i = 5 This path domain is nonexistent since it
implies i < 0 and i = 5

FFF i > j + 1 i < 0 i ≠ 5 2i + 1 j - 1 4i + j

6. Future Work

The next step in this research is to create a new prototype that uses the knowledge
gained from the first one to automate more of the analysis, and handle some of the cases
that the initial prototype cannot. The ultimate goal of the research is to be able to take an
execution package (for example, a COTS software system), re-engineer this into a form
that can be analyzed, and carry out the analysis. If this could be done, the dependence on
compilers and operating systems could also be eliminated. There is, however, a long way
to go before this possibility is more than a hope.

ACKNOWLEDGMENTS

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

REFERENCES

U.S. Nuclear Regulatory Commission, 1997. Standard Review Plan for the Review of
Safety Analysis Reports for Nuclear Power Plants, Chapter 7, Rev. 4, NUREG-
0800.

EPRI, 1988. Guideline for the Utilization of Commercial Grade Items in Nuclear
Safety Related Applications. Palo Alto CA: Electric Power Research Institute,
EPRI NP-5652.

Hatton L., 1995. Safer C, New York: McGraw Hill.

(9)

Littlewood B., Strigini L., 1993. Validation of ultrahigh dependability for software-based
systems technique. Comm. ACM 36, 69-80.

Butler R.W., Finelli G.B., 1993. The infeasibility of quantifying the reliability of life-
critical real-time software. IEEE Trans. Soft. Eng. 19, 3-12.

Poore J.H., Mills H.D., Mutchler D., 1993. Planning and certifying software system
reliability. IEEE Software 10, 88-99.

Hecht M.S., 1977. Flow Analysis of Computer Programs, Amsterdam: North-Holland.

Muchnick S.S., Jones N.D. (Ed), 1981. Program Flow Analysis, Englewood Cliffs NJ:
Prentice Hall.

Fenton N.E., Whitty R.W., Kaposi A.A., 1985. A generalised mathematical theory of
structured programming. Theoretical Computer Science 36, 145-171.

Lawrence, J.D., 2000. Software Qualification in Safety Applications. Rel. Eng. and
System Safety, to appear.

White L.J., Cohen E.I., 1980. A domain strategy for computer program testing. IEEE
Trans. Soft. Eng. 6, 247-257.

Alefeld G., 1983. Introduction to Interval Computations, Academic Press.

Littlewood B., Fenton N., 1996. Applying Bayesian belief networks to system
dependability assessment. In: Proc. Safety Critical Sys. Club Symp.

